ASSESSING FIREFIGHTERS’ EXPOSURE TO AIR TOXICS IN BUSHFIRE SMOKE

Fabienne Reisen and Mick Meyer
Bushfire CRC and CSIRO Marine & Atmospheric Research, VIC

Dane Hansen
Bushfire CRC and RMIT University, VIC
Firefighting Work Environment

BUSHFIRE SMOKE
- Carbon monoxide
- Respirable particles
- Aldehydes
- Volatile Organic compounds
What do we know?

United States

1. USDA Forest Service Pacific Northwest Research Station

2. National Institute for Occupational Safety & Health

Australia - Project Aquarius

Risk Assessment Framework

- **SOURCE**: Characterize bushfire environment - workplace
- **EXPOSURE**: Environmental monitoring
- **DOSE**: Medical condition
 - Short-term
 - Long-term
- **MEDICAL CONDITION**: Health monitoring
Occupational Exposure Standards

- Occupational exposure standards (ASCC)
 - Exist for a range of air toxics
 - Not ‘no-effect’ level
 - Best used to assess quality of work environment

- TWA - Time-Weighted Average concentration
 - 8-hour working day, 5-day working week
 - Sedentary work activity

- STEL - Short-Term Excursion Limit
 - for those compounds with acute effects

- Review OES for bushfire fighting work environment

- Varying work shifts
- Off-shift exposures
- Heavy workload
- Fatigue & heat stress
- Mixture of pollutants
Methodology

Sample within the breathing zone of firefighters

- Key tasks
- Fuel types
- Fire types
- Various agencies
Methodology

Additional sampling equipment set up on vehicles
Field Monitoring - Sample Distribution

- BUSHFIRES
- SB/HB
- EXP
- FRB
- Ignition
- Ignition/Patrol
- Supervision
- Patrol/Suppression
- Other
- VIC
- QLD
- NT
- TAS
- SA
Results - Variability Among Samples

Drivers
- Work activities
- Burn conditions
 - Terrain
 - Fire stages
 - Fire types
- Fuel characteristics
 - Fuel type
 - Fuel moisture
- Meteorology
 - Wind speed/direction
 - Inversions
Work Activity

Ignition
\[CO_{ave} = 6.2 \text{ ppm} \]

Patrol/Suppression
\[CO_{ave} = 22.2 \text{ ppm} \]

Asset protection
\[CO_{ave} = 10.2 \text{ ppm} \]

Blacking out
\[CO_{ave} = 2.5 \text{ ppm} \]

Mop-up
\[CO_{ave} = 2.4 \text{ ppm} \]

Ignition
\[CO_{ave} = 0.4 \text{ ppm} \]

Patrol/Suppression
\[CO_{ave} = 21.5 \text{ ppm} \]
Burn Conditions

- **Ignition**
 - CO\(_{ave}\) = 0.3 ppm
 - CO\(_{ave}\) = 8.1 ppm

- **Patrol/Suppression**
 - CO\(_{ave}\) = 1.7 ppm
 - CO\(_{ave}\) = 68.2 ppm
CO Exposures - Carboxyhemoglobin Levels

Variables that affect COHb levels:

- CO concentration in air
 Exposure measurements
- Exposure duration
 Data-loggers
- Work activity (ventilation rate, CO diffusion rate)
 Physiology assessment – Project D 2.1
- Background COHb level
 Endogeneous production - 0.4-0.7%
 Smoking (1 pack/day - 5-6%; 2-3 packs/day - 7-9%)
PROGRAM D: ASSESSING FIREFIGHTERS’ EXPOSURE TO AIR TOXICS IN BUSHFIRE SMOKE

→ Carbon Monoxide

Graph showing the concentration of Carbon Monoxide from 10:00 to 18:00 with the following key:
- Average CO
- TWA limit
- Peak limit

The graph indicates the concentration of Carbon Monoxide in parts per million (ppm) with peaks exceeding the TWA limit and the peak limit.
Carbon Monoxide

COHb [%]	SYMPTOMS, EFFECTS
5% | Potential for adverse cardiovascular effects
5-10% | Effects on performance of tasks requiring vigilance and on reaction time, potential headaches, dizziness, reduced work capacity
10-20% | Slight headaches, dizziness, slight breathlessness on exertion
20-30% | Slight to moderate headaches, nausea
30-40% | Severe headaches, vertigo, nausea
Respiratory Irritants

Potential health effects
- Nose and throat irritation
- Difficulty breathing
- Exacerbation of respiratory or cardiac illnesses
- Impaired lung function
Personal versus Vehicle-mounted Sampling

<table>
<thead>
<tr>
<th></th>
<th>Personal</th>
<th>Tanker</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO\text{ave}</td>
<td>21.0</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>CO\text{max}</td>
<td>820</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing carbon monoxide levels over time for personal and tanker sampling.](image)
Exposure Assessment

- Majority of exposure levels below OES

- Exceedances (average & peak)
 - CO and respiratory irritants
 - Small %, short fraction of time

- Major drivers of high exposures
 - Work activity: Patrol/Suppression > Ignition
 - Burn conditions: Terrain, lighting pattern
Potential Control Strategies

- Operational level: Task assignment and rotation (mix high/low exposure tasks; assign firefighters to specific tasks)

- Hazard Awareness Training: explain situations where exposure to air toxics is likely to be high and how exposure risk can be minimized

- Equipment:
 - use of respiratory protection
 - use of personal exposure sensors
SUMMARY

Environmental monitoring

- Primary step in evaluation of working environment
- Personal samples rather than ‘static’ samples
 - Ensure unbiased and representative samples
- Limitations
 - Limited amount of samples
 - Bushfires - Tanker based crews
 - No assessment of the received dose
SUMMARY

Next step . . . Assessing dose received

- Use of ventilation rates, workload, exposure durations to assess dose received
- Biological monitoring - takes into account differences between individuals in uptake, metabolism and excretion of toxics
 ex. COHb monitoring in exhaled breath

. . . Assessing health effects
SUMMARY

OHS standard appropriate for the fire ground

- Altered workshifts
- Heavier Workload
- Bushfire smoke particles

 Chemical composition & physical characteristics determine biological effect

- Interactive health effects - exposure to multiple toxic compounds
Future Directions

Develop an OHS toolkit

- OHS regulations and standards
- Personal exposure assessment
 - Characterising the risks (exposure levels)
 - Assessing the risks (Risk matrix)
 - Mitigating the risks (Residual risks)
 ⇒ Simplified on-going monitoring program, e.g. CO monitoring during 1 fire season
- Post Incident reviews of the effectiveness of the applied OHS strategy
ACKNOWLEDGEMENTS

We thank the Bushfire CRC for funding this project.

We also thank the different agencies for their help and participation in the monitoring process.