Genetic variation in wood basic density and knot index and their relationship with growth traits for *Acacia auriculiformis* A. Cunn ex Benth in Northern Vietnam

PHI HONG HAI 1,2,*, G. JANSSON 1,3, C. HARWOOD 4, and B. HANNRUP 3, HA HUY THINH 2, K. PINYOPUSARERK 5

1 Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences
 Box 7080, SE-750 07 Uppsala, Sweden
2 Research Centre for Forest Tree Improvement, Forest Science Institute of Vietnam, Dong Ngac, Tu Liem, Ha Noi
3 Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, SE-751 83, Sweden
4 Ensis Genetics, Private Bag 12, Hobart 7001, Australia
5 Ensis Genetics, PO Box E4008, Kingston ACT 2604, Australia

Corresponding author: Tel.: +46 18 673322 or +84 4 8389813; Fax: +84 4 8362280;
Email address: phi.hong.hai@vbsg.slu.se or phi.hong.hai@fsiv.org.vn (Phi Hong Hai)

Abstract

One hundred and forty families from 13 provenances of *Acacia auriculiformis* A. Cunn ex Benth were tested in a progeny trial in Ba Vi, Ha Tay Province, on a typical hill site in northern Vietnam. Two selective thinnings were done, at 3 and 5 years, to retain only the best tree in each four-tree family plot. All remaining trees were measured to estimate individual narrow-sense heritabilities and genetic correlations for growth traits [height (HT), diameter (DBH), tree volume (VOL)] stem quality traits [bark thickness (BRK), straightness (STR), forking (FOK), and knot index (KI)], pilodyn penetration and wood basic density. The estimated individual-tree, narrow-sense heritabilities (\hat{h}^2) for growth traits and STR increased over time from age 3 to ages 5 and 9. Similarly, \hat{h}^2 for wood basic density also increased from corewood to outerwood. For growth traits at age 9 \hat{h}^2 ranged from 0.36 to 0.39. The observed heritabilities of wood basic density and pilodyn penetration ($\hat{h}^2 = 0.47$ and 0.61 respectively) were consistently higher than for growth traits. However, the values for stem quality traits ($\hat{h}^2 = 0.12 – 0.31$) were lower than for growth traits, with exception of BRK (0.39). Estimated coefficients of additive genetic variation (CVₐ)
were high for growth traits at all ages, ranging from 4.5% to 26.2% and were very high for stem quality traits (14.7-26.2%) at age 9. CV_a for wood basic density was around 8% at different ages. Age-age correlations for all growth traits, straightness and wood basic density ranged from 0.86 to 1.02. The estimated additive genetic correlations (r_a) between growth traits and wood density (including both basic density and pilodyn) were not significantly different from zero. Genetic correlation estimates between growth traits and stem quality traits, except straightness, were low to moderate (r_a from -0.11 to -0.65), while strong positive genetic correlations (r_a 0.79-0.96) were found between growth traits and straightness. Strong negative genetic correlation between pilodyn penetration and wood basic density (r_a -0.88) indicated that pilodyn would reliably rank trees for basic density.

Key words

Acacia auriculiformis, growth, stem form, wood density, heritability, age-age correlation

Introduction

The Vietnamese government is currently striving to establish plantations of fast-growing trees to ensure an adequate log supply to sustain the operations of the existing wood-based industries in the country. Trials of Acacia species and provenance in Thailand (Chittachumnonk & Sirilik 1991), Hainan Island, China (Yang & Zeng 1991) and Vietnam (Kha 2003; Nghia 2003) indicated that Acacia auriculiformis is a useful multipurpose tree species, being fast growing and suitable for timber and pulp production (Nghia 2003; Turnbull et al. 1997). However, silvicultural research on A. auriculiformis has been limited in Vietnam and genetic improvement is at an early stage. Information on genetic variation in economic traits including growth, stem straightness, branch characteristics and wood basic density is required to guide tree improvement to meet industry requirements.

The goal of most tree improvement programs is now to combine rapid stem volume growth with high quality stem form and desired wood properties so as to produce well adapted trees of good quality for lumber, plywood or pulp wood (Doede & Adams 1998; Zobel & Talbert 1984). Stem form, branch characteristics and wood density are often considered the most important wood traits because of their effect on product recovery and nearly all final products of wood (Bendtsen 1978; Zobel & Van Buijtenen 1989; Zobel & Talbert 1984). Fast-growing trees with short rotation have a high proportion of low-density juvenile wood (Maeglin 1987), which is undesirable for both
wood strength and pulp yield. This raises concerns about the wood density in timber from intensively managed forests as compared to slower growing and more mature natural stands (Zobel & Van Buijtenen 1989).

Incorporation of quality traits such as wood density, bark thickness, stem straightness and knot index into an existing tree breeding program requires information about the genetic variation of each quality trait and their genetic relationships with growth traits. Such information is generally lacking for *A. auriculiformis*. In this species reported estimates of narrow-sense heritabilities for most growth and stem form parameters at early ages were low (Luangviriyasaeng & Pinyopusarerk 2002). High age-age correlations for growth traits were found, but height and diameter were not strongly correlated with survival, number of stems, branch angle and wood density in a provenance trial (Khasa et al. 1995).

Our study aimed to determine genetic variation in growth traits, wood basic density, bark thickness, straightness and branch characteristics for *A. auriculiformis*, test the effectiveness of pilodyn penetration as an indirect measure of wood basic density and to examine the genetic relationships between these two traits and growth traits. The implications of these results for the development of a breeding program of *A. auriculiformis* in northern Vietnam are considered.

Materials and Methods

Genetic material tested and trial description

In August 1997, a progeny test including 140 open-pollinated families from 13 seed sources of *A. auriculiformis* was established in northern Vietnam. The seed sources originated mainly from natural provenances in Queensland (QLD), Australia. These provenances were selected on the basic of their known superior growth and tree form in earlier provenance trials in Vietnam (Kha 2003). Natural provenances from Northern Territory, Australia (NT) or Papua New Guinea (PNG) were not included. Selected families were also sourced from the best trees in two first-generation seedling seed orchards, one located in Melville Island, Australia based on PNG provenances, and the other in Sakaerat, Thailand based on provenances from PNG, QLD and NT, and Thai land race selections (Table 1).

The trial site at Ba Vi in Ha Tay province, 21°07’N, 105°26’E, altitude 60 m a.s.l., is typical of hill sites in the north of Vietnam. The mean annual rainfall is 1680 mm and the mean annual
temperature is 23°C. The soil is a yellow ferralitic clay loam with strong laterization evident in the profile, acid (pH 3.5-4.5) and infertile, with low levels of phosphorus and potassium.

The test used a row-column design generated by the computer program CycDesign (Williams et al. 2002), with 8 replicates, each with 10 row and 14 column incomplete blocks. Each family was represented by a single four-tree row plot in each replicate. The original spacing was 1.5 m between trees within rows and 4 m between rows. Three kg of well-rotted cow manure and 0.2 kg of NPK fertilizer were placed at the bottom of each 30 x 30 x 30 cm planting hole at planting time. The trials were weeded twice per year up to age four years. Successive phenotypic thinnings were made in the test at three and five years. Trees that were inferior in vigour, or which had poor stem straightness, were removed. The thinning at 3 years retained the two best trees per plot, and that at 5 years retained the single best tree. All families were retained in the test.

Assessment

Total tree height (HT), diameter at breast height (DBH), forking (FOK), straightness (STR), wood density (DEN), pilodyn penetration (PIN), bark thickness (BRK) and branch characteristics of each tree were recorded at age 9 years for the 1120 remaining trees in the trial. The growth traits and straightness were also assessed for 4400 trees at 3 years before the first thinning and 2091 remaining trees at 5 years before the second thinning. Diameter of the largest branch, length of the longest branch and number of the branches were also measured and counted for 1120 remaining trees at 9 years old.

The stem straightness was scored using a scale with 5 classes:

1. for a very crooked stem with >2 serious bends;
2. for crooked stem with 2 serious bends;
3. for slightly crooked stem with 1 serious and/or > 2 small bends;
4. for almost straight stem with 1-2 small bends and
5. for a perfectly straight stem.

Forking reflects the ability of the tree to retain its primary axis. It was scored on a scale with 6 classes:

1. for double or multiple stems from ground level
2. for axis loses persistence in the first (lowest) quarter of the tree
3. for axis loses persistence in the second quarter of the tree
for axis loses persistence in the third quarter of the tree
for axis loses persistence in the fourth quarter of the tree, and
for complete persistence

Pilodyn penetration was measured using a 6J Forest Pilodyn, by removing a small section of the bark at 1.3 m above the ground and taking two readings for each tree, one from the east side and one from the north. Bark thickness was measured using a bark gauge at each of east and north.

A 5 mm increment core was taken at 1.3 m from every remaining tree using a hand-held corer and immediately stored in an aluminum tube with the two ends sealed, and later taken to a freezer. Since it is difficult to recognize annual rings in the cores of this species, the cores were cut into three equal segments to estimate correlation between segments: (1) corewood where heartwood formation had already been initiated, (2) transition wood, and (3) outerwood. Density was based on the water displacement method (Olesen 1971). Two weights in gram (g) were taken for every sample: weight of water displaced by immersion of core (W₁) and oven dry weight (W₂). Density of each segment (DEN₁, DEN₂ and DEN₃) was then calculated as: $DEN = \frac{W₂}{W₁}$ (g cm⁻³), and total core density (DEN) was then calculated as:

$$DEN = \frac{W₂(1) + W₂(2) + W₂(3)}{W₁(1) + W₁(2) + W₁(3)} \text{ (g cm}^{-3}\text{)}$$ (1)

where $W₁(1)$, $W₁(2)$ and $W₁(3)$ are weights of water displaced by immersion of segment 1, 2 and 3, respectively. Similarly, $W₂(1)$, $W₂(2)$ and $W₂(3)$ are oven dry weights of segment of 1, 2 and 3.

The tree volume was calculated according to the following formula based on measurements from *A. auriculiformis* plantations in Vietnam (Hinh et al. 1996)

$$V = -0.03196 + 0.00511 \times HT + 0.187 \times HT \times DBH^2$$ (2)

The knot index was calculated in the following way (Doede & Adams 1998)

1. Branch diameter ratio (BDIA; mm mm⁻¹): Diameter of the largest branch (mm) on the tree divided by DBH
2. Branch length ratio (BLEN; cm mm$^{-1}$): Length (cm) of the longest branch on the tree divided by DBH.

3. Branch number (BNUM): number of branches in the tree. Branch number was counted for main branches on the upper part, which the main branches must have more than 3 cm in diameter.

4. Knot index (KI): Ratio of the branch cross sectional area (mm2) to the stem cross sectional area (mm2) estimated as

$$KI = BNUM \times BDIA^2 / DBH^2$$

(3)

Statistical analysis

Data on stem straightness and forking deviated from normal distributions. It was assumed that these traits were controlled genetically by an underlying polyfactorially determined liability scale (Falconer & Mackay 1996), and that the given scores were caused by imposed thresholds. Prior to analysis class scores were therefore transformed into asymptotic ‘normal scores’ (Gianola & Norton 1981) in order to adjust for non-adequate or variable spacing of classes and to improve the efficiency of subsequent analyses (Ericsson & Danell 1995).

The statistical analysis was based on individual tree observations according to the linear mixed model:

$$y = X_B m + X_p p + Z_w w + Z_n n + Z_t t + Z_f f + e$$

(4)

with $y = (y_1, y_2, \ldots, y_n)'$, $m = (m_1, m_2, \ldots, m_n)'$, $p = (p_1, p_2, \ldots, p_n)'$, $w = (w_1, w_2, \ldots, w_n)'$, $n = (n_1, n_2, \ldots, n_n)'$, $f = (f_1, f_2, \ldots, f_n)'$, $e = (e_1, e_2, \ldots, e_n)'$, $X = \sum \otimes X_{Bj}$, $X = \sum \otimes X_{pi}$, $Z_w = \sum \otimes Z_{wi}$, $Z_n = \sum \otimes Z_{ni}$, $Z_t = \sum \otimes Z_{ti}$, and $Z_f = \sum \otimes Z_{fi}$, $\sum \otimes$ denotes the direct sum, and i the number of traits from 1 to n, y is the vector of individual observations for the different traits, m is the vector of fixed effect of replicate, p is the vector of fixed effect of seed source, w is the vector of random row within replicate effect, n is the vector of random column within replicate effect, t is the vector of fixed effect of plot for assessments at age 3 and age 5, f is the vector of random family within seed source effects, and e is the vector of random residuals.
X, **X**, **Z**, **Z**, **Z**, **Z** and **Z** are incidence matrix relating **m**, **p**, **w**, **n**, **t** and **f** to **y**. The data analyses were implemented using ASReml software (Gilmour et al. 2002).

Assuming a multivariate normal distribution (MND), the expected mean and covariance were:

\[
V = \begin{bmatrix}
W \otimes I & 0 & 0 & 0 & 0 \\
0 & N \otimes I & 0 & 0 & 0 \\
0 & 0 & T \otimes I & 0 & 0 \\
0 & 0 & 0 & F \otimes A & 0 \\
0 & 0 & 0 & 0 & R \otimes I
\end{bmatrix}
\]

where 0 is a null matrix, I is an identity matrix of order equal to the total number of rows, columns, plots, genetic, and residuals, respectively, and \(\otimes \) is the direct (Kronecker) product operation. \(W = \{ \sigma_{m,w} \} \), \(N = \{ \sigma_{n,n} \} \), \(T = \{ \sigma_{t,t} \} \), \(F = \{ \sigma_{f,f} \} \), and \(R = \{ \sigma_{r,r} \} \) are the row, column, plot, family and residual variance-covariance matrices between trait i and j, denoting variance when \(i = j \). A is the relationship matrix. To ensure that the variance-covariance matrix was positive definite, restrictions were in some cases applied to the parameters. In cases with single-tree plots, the plot effects are omitted. The significance of seed source effects was assessed using F-tests.

Genetic parameters

Age-age and trait-trait genetic correlations and heritabilities were simultaneously estimated based on multivariate Reml analysis using model (4). Family variance (\(\sigma^2_f \)), phenotypic variance (\(\sigma^2_p \)), plot variance (\(\sigma^2_t \)) and environmental variance (\(\sigma^2_e \)) for different traits and ages were estimated using ASReml. The estimated variance components were used to calculate the narrow-sense heritabilities for the characters under consideration. Since open-pollinated families in the progeny test came from open-pollinated parent trees in wild stands or seed orchards, the additive genetic variance (\(\sigma^2_A \)) was estimated as three times the family variance component. Because some degree of inbreeding (about 10%) was expected the coefficient of relationship was assumed to be 0.33, making heritability values more conservative than if a value of 0.25 was assumed (Squillace 1974). The individual heritability (\(\sigma^2_h \)), additive genetic variance (\(\sigma^2_A \)), and total phenotypic variance (\(\sigma^2_P \)) estimators were calculated as follows:

\[
\sigma^2_P = \sigma^2_f + \sigma^2_t + \sigma^2_e
\]

(6)

\[
\sigma^2_A = 3\sigma^2_f , \text{ and}
\]

(7)
\[\hat{h}^2 = \frac{\sigma^2_A}{\sigma^2_A + \sigma^2_I + \sigma^2_e} \]

(8)

Coefficient of additive variation \((CV_A) \), additive genetic correlation \((r_A) \) and phenotypic correlation \((r_p) \) between traits or between ages were estimated as:

\[CV_A = \frac{100 \sigma_A}{X} \]

(9)

\[r_A = \frac{\sigma_{A_1 \cdot A_2}}{\sigma_{A_1} \sigma_{A_2}} \]

(10)

\[r_p = \frac{\sigma_{P_1 \cdot P_2}}{\sigma_{P_1} \sigma_{P_2}} \]

(11)

where \(X \) is the phenotypic mean, \(\sigma_{A_1 \cdot A_2} \) and \(\sigma_{P_1 \cdot P_2} \) are the genotypic and phenotypic covariance between two traits, respectively. \(\sigma_{A_1} \), \(\sigma_{A_2} \) and \(\sigma_{P_1} \), \(\sigma_{P_2} \) are the genotypic and phenotypic standard deviations of trait 1 and trait 2. Standard errors of the estimates of heritabilities, genotypic and phenotypic correlations were calculated using a standard Taylor series approximation implemented in the ASReml program (Gilmour et al. 2002).

The relative selection efficiency (RSE) for forward selection expressing the relative genetic gain per time unit was calculated according to Falconer & Mackay (1996):

\[RSE = r_A i j h j t_m / i_m h_m t_j \]

(12)

where \(r_A \) is the additive genetic correlation, \(i \) is the selection intensity, \(h \) is the square root of the heritability, \(t \) is the tree age at selection, and \(j \) and \(m \) are the indices for the juvenile and mature trait, respectively. The same selection intensity for the juvenile and mature trait was used in the calculations.

Results

Seed source differences

There were significant differences between seed sources for DBH, VOL and quality traits (BRK, PIN, KI and DEN), but not for total height, forking and straightness (Table 2). Trees descended from the Coen River provenance generally grew fastest, followed by those from Sakaerat (Thailand) and Morehead River. However, DEN and KI of Sakaerat and Morehead River were higher than those of Coen River. At 9 years, the mean values for Coen River were 13.1 m for HT,
14.9 cm for DBH, 60.6 dm3 tree$^{-1}$ for VOL and 0.58 g cm$^{-3}$ for DEN. The lowest density was found in Wenlock River (0.55 g cm$^{-3}$), but its KI was the best in the test (0.71).

Heritability and coefficient of variation estimates

The family variance component was significantly different from zero for all studied traits at age 9 ($p<0.05$). The estimates of individual-tree, within-provenance heritabilities (\hat{h}^2) for growth traits and STR increased over time from age 3 to ages 5 and 9 years (Table 3). Before the first thinning, at age 3 years, HT and DBH had \hat{h}^2 of 0.13 and 0.17 respectively, while at age 9 years, \hat{h}^2 for HT and DBH and VOL were in the range 0.36 to 0.39. The estimated heritabilities for wood quality traits were also high, 0.61 for DEN and 0.47 for PIN. Those for stem quality traits were lower than for basic density, ranging from 0.12 to 0.39. KI had the lowest heritability (0.12). Coefficients of additive variation (CVA) were high for growth traits at all ages, ranging from 4.5% to 26.2% and were very high for most quality traits (14.7-26.2%) at age 9. *CV$_A$ for wood basic density was stable, at around 8-9% for the different ages. As with heritability, CV$_A$ for growth traits increased over time.

The heritabilities for wood basic density also increased from corewood to outerwood (Table 3). The heritability for segment 1 (DEN$_1$) was lowest (0.40), with mean basic density of 0.53 g cm$^{-3}$. The heritabilities for segment 2 (DEN$_2$) and segment 3 (DEN$_3$) were higher than DEN$_1$ and stabilized at 0.55 compared to 0.61 for total core density.

Genetic correlations

The estimated age-age genetic correlations for the growth traits and STR were strong (0.64-0.99). Corresponding correlations for wood density were strong and close to unity (Table 5).

Trait-trait genetic correlation estimates between growth and quality traits at age 9 years are shown in Table 4. The correlation between HT and DBH was strong (0.79). Similarly, STR correlated strongly with the growth traits, 0.79 with HT and 0.96 with DBH. There were low to moderate negative genetic correlations between DEN, PIN and KI and the growth traits, but none of these relationships were significantly different from zero. A strong negative association between DEN and PIN was found, with genetic correlation of -0.88. STR correlated strongly with the growth traits, but moderately with BRK. The correlations between KI and the growth traits were negative and low. FOK had weak positive correlations with the growth traits. The correlations among the quality traits were weak, ranging from -0.28 to 0.50.
Relative selection efficiency

Forward selection for the growth traits and wood density was shown to give a higher genetic gain per time unit at ages 3 and 5 years than at age 9 (Table 5). Similarly, genetic gain per year was higher at age 5 than at age 9 for growth traits and STR. Assuming that the tree core segments corresponded approximately to ages 0-3, 4-6 and 7-9 years, relative selection efficiency for wood density also decreased with the age of selection.

Discussion

The natural provenances tested in the present study were selected on the basis of their known superior growth in earlier provenance trials in Vietnam, and were therefore not a random selection of provenances. Specifically, PNG provenances were only represented via the seed orchard families and NT provenances were excluded. This reduces the expected differences compared to a random selection of provenances. However, significant differences among seed sources were found for all the studied traits in the test except HT, STR and FOK (Table 2). This indicated considerable potential for improvement in the growth and quality of \textit{A. auriculiformis} through selecting among superior provenances. Coen River and Morehead River provenances grew faster than other seed source. The result is consistent with findings previous studies in Zaire, Thailand, and Vietnam (Kha 2003; Khasa \textit{et al.} 1995; Luangviriyasaeng & Pinyopusarerk 2002; Mahat 1999; Nghia 2003). The slowest-growing provenance collections in the present study were those from Wenlock River.

The first-generation seedling seed orchard at Sakaerat was established from many natural provenances of Papua New Guinea, Queensland and Northern Territory, and Thai landrace families (Luangviriyasaeng & Pinyopusarerk 2002). Thai landraces were the poorest performing in all tests and their exclusion from the improvement program of \textit{A. auriculiformis} in Thailand was recommended (Luangviriyasaeng & Pinyopusarerk 2002). The families from this orchard were collected primarily from mother trees of QLD provenance origin, and displayed the best growth in the trial, which may reflect the intensity of selection and/or hybrid vigour from combinations among many different provenances. In contrast, the families selected from the Melville Island seed orchard, derived solely from PNG provenances, did not display outstanding vigour.
Trees from Morehead River provenance had the highest wood density (0.59 g cm\(^{-3}\)) in this study, followed by those from the Sakaerat and Melville Island seed orchards and Coen River. Khasa et al. (1995) also found significant differences within provenances for wood density in Zaire, with provenance means ranging from 0.49 to 0.53 g cm\(^{-3}\) at age 21 months.

Heritability and coefficient of variation estimates

At age 3 years, \(\hat{h}^2\) for growth were low, but still higher than \(\hat{h}^2\) in a previous study in Thailand (Luangviriyasaeng & Pinyopusarerk 2002). In *A. crassicarpa* and *A. mangium*, Arnold & Cuevas (2003) estimated that \(\hat{h}^2\) for growth traits and stem straightness were low to very low (0.07 to 0.15) with the exception of straightness in *A. crassicarpa* which was moderate (0.25). In the present study, \(\hat{h}^2\) for growth traits, STR and DEN increased with age. The heritabilities for the wood and stem quality traits DEN, PIN, BRK and FOK were moderate to high, at 0.61, 0.47, 0.39 and 0.31, but that for KI was low (0.12). Our results suggest that considerable response to selection could be expected for growth, STR, DEN, PIN, BRK and even KI. There are no other reports on the individual heritability estimates for DEN, PIN, BRK and KI available for comparison.

High heritabilities and CV\(_A\) in the present study would have been influenced by the two within-family selective thinnings carried out at 3 and 5 years. Up to three trees from each original four-tree family plot were removed, but all families were retained in the trial. This may have reduced the error variance. Heritabilities for HT and DBH at age 9 years were substantially higher than those at age 3 years prior to the first thinning and age 5 years prior to the second thinning. This result was in accordance with a previous study of *Pinus radiata* (Matheson & Raymond 1984). The authors reported that heritability estimates for unthinned plots were much smaller than for thinned plots in two progeny trials. In contrary, analysis based only on trees remaining after thinning in *Eucalyptus urophylla*, Wei & Borralho (1998) reported lower estimates of heritabilities and age-age genetic correlations for thinned plots than for unthinned plots, but genetic parameters for pilodyn penetration or bark thickness were not affected by the thinning.

The CV\(_A\) for all studied traits were in accordance with the general range of values presented in a review on forest tree species (Cornelius 1994). The CV\(_A\) for quality traits were high and ranged from 15.9 to 26.2\%. Reports on heritability and CV\(_A\) for *A. auriculiformis* are scarce. However, in another *Acacia* species (*A. nilotica*), Ginwal & Mandal (2004) reported that the CV\(_A\) were 7.3\%
for HT and 6.6% for DBH in a 6-year-old trial in India. In *E. urophylla*, Wei & Borralho (1997) reported high CV_A for PIN and BRK in four progeny tests in China.

Genetic age-age correlations

High genetic age-age correlations for growth traits and STR between ages 5 and 9 were observed in this study (Table 5). The magnitude and trend in genetic age-age correlations estimated in this study are in accordance with earlier provenance-level studies on the same species (Khasa *et al.* 1995). The high genetic correlations, close to unity, for wood density between segment 1, segment 2 and segment 3 indicate high age-age genetic correlations for wood density. Nevertheless, a potential source of error is the thinning at age 3 and age 5, as sampling for wood density was done only on the retained stems. One hypothesis for high genetic age-age correlations for wood density is that these traits are influenced by a lower number of genes than growth traits, which generally show lower genetic age-age correlations than wood density (Dieters *et al.* 1995; Hannrup & Ekberg 1998; Hodge & White 1992; Xie & Ying 1996).

Genetic correlations between quality traits and growth traits

Genetic correlations between the quality traits (PIN, DEN, FOK, BRK and KI) and the growth traits HT and DBH at age 9 years were weak and unfavorable with large standard errors. The moderate heritabilities for HT and DBH, and the relatively small sample size (total of 1120 trees from 134 families) contributed to the uncertainty of estimation of these correlations. However, the growth traits were strongly correlated with straightness. In a study of *A. auriculiformis* in a clonal test in Vietnam, high trait-trait correlations between the growth traits and STR were also found (Hai *et al.* 2007 in press). In provenance trials in Zaire growth traits were not correlated to survival, number of stems, straightness, branch angle and wood density (Khasa *et al.* 1995). Also, genetic correlations between quality traits and growth traits in *Eucalyptus* species have been reported weak and often unfavorable (Greaves *et al.* 1996; Wei & Borralho 1997). Figures 1a and 1b illustrated relationship between means of DBH and total core density (DEN) for the families and seed sources in our trial. The figures confirm the possibility of selecting simultaneously for improved growth and wood density and the provenance and family levels for *A. auriculiformis* in northern Vietnam. The feasibility of clonal forestry using selected individuals of *A. auriculiformis* mass-propagated from stem cuttings (Hai *et al.* 2007 in press) will enable effective capture of favourable non-additive genetic variation as well as additive genetic variation that obtained through sexual breeding.
Genetic correlation between pilodyn penetration and wood basic density was strong and negative, with lower density cause higher penetration. The strong correlation indicated that pilodyn penetration is generally reliable as an indirect measure of wood basic density in *A. auriculiformis*. There is no other report on genetic correlation between pilodyn penetration and wood basic density in *Acacia* species. However, strong correlations were found in *Eucalyptus* species (Greaves *et al.* 1996; Greaves *et al.* 1997; Wei & Borralho 1997).

Implications for tree improvement in A. auriculiformis

The selective thinning of the trials and the limited number of repeat measurements meant that the optimum selection age for the studied traits could not be reliably determined in this study. However, the results indicated that the optimum age of selection could be as little as 3 years for growth traits and wood density. Similarly Raymond (2000) reported that the early selection of wood basic density could be made at age 3 years with high heritability in *Eucalyptus* species. It should be relatively easy to select at this age for growth, stem straightness and wood density or pilodyn penetration. Forking, bark thickness and knot index cannot be selected for effectively at 3 years in northern Vietnam because trees, with a mean height of about 7 m and mean DBH of 8 cm, have not attained sufficient size; 5 years is probably the minimum age for the expression of these traits. Our data demonstrate strong potential for gains in growth both within and between seed sources. However, improvement based on growth traits alone could prejudice some quality traits, such as wood basic density, knot index and bark thickness. For selection of superior individuals, a selection index assigning appropriate weights to wood density, knot index and volume should be defined, with the exact coefficients dependent on the specific breeding objectives (Borralho *et al.* 1993).

Conclusion

In a provenance-progeny trial of *A. auriculiformis* in northern Vietnam, significant differences between seed source and families were found for most studied traits, with the exception height, forking and stem straightness at the seed source level. Heritabilities of growth traits were low to moderate, with high age-age correlations. Also, wood density was under strong genetic control, as indicated by direct measurements on increment cores or indirect measurement of pilodyn penetration. These two traits were highly correlated, confirming that pilodyn penetration is a useful predictor of wood basic density in this species. Straightness, bark thickness and forking had moderate heritabilities, while knot index had low heritability. High age-age correlations for wood density and stem straightness indicate that selection of the best families for these traits could be
carried out at young age (3-5 years). Genetic correlations between quality traits (pilodyn penetration, wood density, forking, bark thickness and knot index) and growth traits were weak and unfavorable with large standard errors. The substantial coefficients of additive genetic variation and significant heritabilities for most traits indicate that it should be possible to use a selection strategy that combines improvements in growth, stem and wood quality for *A. auriculiformis* in northern Vietnam.

Acknowledgment

The progeny trial used in this study was established in cooperation with the Research Centre for Forest Tree Improvement and CSIRO Forestry and Forest Products, with support from the FAO’s Regional Project RAS/91/004 (FORTIP) and the Australian Centre for International Agricultural Research. The authors acknowledge staff in the Research Centre for Forest Tree Improvement in Hanoi and Ba Vi station who worked on establishment and maintenance of the trial and data collection over the years. This study was funded by a SIDA/SAREC project.

References

MAHAT, M.N. 1999: “Genetic Variation of Growth and Selected Wood Properties of Four Years Old Acacia Auriculiformis Provenances at Serdang Selangor”. Putra University of Malaysia. 139 p.

Table 1: Details of seed origins in the *Acacia auriculiformis* progeny test

<table>
<thead>
<tr>
<th>CSIRO seedlot No</th>
<th>Provenance</th>
<th>Origin</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude</th>
<th>N° of families</th>
</tr>
</thead>
<tbody>
<tr>
<td>17961</td>
<td>Olive River</td>
<td>QLD</td>
<td>12° 15'</td>
<td>142° 52'</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>17966</td>
<td>Boggy Creek</td>
<td>QLD</td>
<td>15° 52'</td>
<td>144° 53'</td>
<td>240</td>
<td>6</td>
</tr>
<tr>
<td>18854</td>
<td>Archer R & Tribs</td>
<td>QLD</td>
<td>13° 26'</td>
<td>142° 57'</td>
<td>90</td>
<td>18</td>
</tr>
<tr>
<td>18998</td>
<td>Pascoe R Cape York</td>
<td>QLD</td>
<td>12° 34'</td>
<td>143° 06'</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>19244</td>
<td>Rocky Creek</td>
<td>QLD</td>
<td>12° 47'</td>
<td>142° 49'</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>19245</td>
<td>Wenlock River Morton</td>
<td>QLD</td>
<td>12° 29'</td>
<td>142° 40'</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>19246</td>
<td>Wenlock River</td>
<td>QLD</td>
<td>12° 29'</td>
<td>142° 29'</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>19249</td>
<td>Wenlock River</td>
<td>QLD</td>
<td>13° 05'</td>
<td>142° 56'</td>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>19250</td>
<td>Coen River</td>
<td>QLD</td>
<td>13° 57'</td>
<td>143° 10'</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>19251</td>
<td>Morehead River</td>
<td>QLD</td>
<td>15° 01'</td>
<td>143° 40'</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>19254</td>
<td>West Normanby River</td>
<td>QLD</td>
<td>15° 49'</td>
<td>144° 58'</td>
<td>110</td>
<td>4</td>
</tr>
<tr>
<td>19255</td>
<td>Seed Orch Melville Is</td>
<td>NT</td>
<td>11° 34'</td>
<td>130° 34'</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>19326</td>
<td>Sakaerat</td>
<td>THA</td>
<td>14° 13'</td>
<td>101° 55'</td>
<td>500</td>
<td>75</td>
</tr>
</tbody>
</table>

QLD: Queensland-Australia; NT: Northern Territory-Australia; THA: Thailand
Table 2. Provenance means for studied traits at age 9 years in the progeny test.

<table>
<thead>
<tr>
<th>CSIRO No</th>
<th>HT (m)</th>
<th>DBH (cm)</th>
<th>STR</th>
<th>VOL (dm3 tree$^{-1}$)</th>
<th>FOK</th>
<th>BRK (mm)</th>
<th>PIN (mm)</th>
<th>KI</th>
<th>DEN (g cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17961</td>
<td>12.4</td>
<td>14.4</td>
<td>1.8</td>
<td>49.7</td>
<td>3.0</td>
<td>6.0</td>
<td>6.9</td>
<td>1.26</td>
<td>0.57</td>
</tr>
<tr>
<td>17966</td>
<td>12.0</td>
<td>14.4</td>
<td>2.1</td>
<td>48.8</td>
<td>3.0</td>
<td>6.3</td>
<td>6.7</td>
<td>1.22</td>
<td>0.56</td>
</tr>
<tr>
<td>18854</td>
<td>11.7</td>
<td>14.3</td>
<td>2.3</td>
<td>47.0</td>
<td>3.0</td>
<td>5.8</td>
<td>7.0</td>
<td>0.90</td>
<td>0.58</td>
</tr>
<tr>
<td>18998</td>
<td>12.0</td>
<td>14.1</td>
<td>2.0</td>
<td>48.1</td>
<td>3.0</td>
<td>4.8</td>
<td>8.9</td>
<td>1.14</td>
<td>0.56</td>
</tr>
<tr>
<td>19244</td>
<td>12.2</td>
<td>14.4</td>
<td>1.9</td>
<td>51.9</td>
<td>2.8</td>
<td>5.1</td>
<td>8.5</td>
<td>0.94</td>
<td>0.56</td>
</tr>
<tr>
<td>19245</td>
<td>11.7</td>
<td>13.9</td>
<td>1.9</td>
<td>45.9</td>
<td>2.5</td>
<td>4.7</td>
<td>8.5</td>
<td>0.90</td>
<td>0.58</td>
</tr>
<tr>
<td>19246</td>
<td>11.2</td>
<td>13.6</td>
<td>1.8</td>
<td>44.9</td>
<td>2.6</td>
<td>4.9</td>
<td>8.2</td>
<td>1.14</td>
<td>0.57</td>
</tr>
<tr>
<td>19249</td>
<td>11.7</td>
<td>13.6</td>
<td>1.7</td>
<td>46.8</td>
<td>3.0</td>
<td>4.9</td>
<td>8.3</td>
<td>0.71</td>
<td>0.55</td>
</tr>
<tr>
<td>19250</td>
<td>13.1</td>
<td>14.9</td>
<td>1.9</td>
<td>60.6</td>
<td>3.2</td>
<td>5.6</td>
<td>7.9</td>
<td>1.16</td>
<td>0.58</td>
</tr>
<tr>
<td>19251</td>
<td>12.3</td>
<td>14.9</td>
<td>2.1</td>
<td>56.3</td>
<td>3.6</td>
<td>4.9</td>
<td>8.3</td>
<td>1.02</td>
<td>0.59</td>
</tr>
<tr>
<td>19254</td>
<td>12.3</td>
<td>14.6</td>
<td>1.7</td>
<td>52.6</td>
<td>2.9</td>
<td>5.4</td>
<td>7.7</td>
<td>1.03</td>
<td>0.56</td>
</tr>
<tr>
<td>19255</td>
<td>11.5</td>
<td>14.4</td>
<td>1.7</td>
<td>47.9</td>
<td>2.7</td>
<td>5.6</td>
<td>7.8</td>
<td>0.76</td>
<td>0.58</td>
</tr>
<tr>
<td>19326</td>
<td>12.4</td>
<td>15.3</td>
<td>1.8</td>
<td>58.0</td>
<td>2.8</td>
<td>5.8</td>
<td>7.8</td>
<td>0.87</td>
<td>0.59</td>
</tr>
</tbody>
</table>

| F-test | n.s | ** | n.s. | ** | n.s. | ** | *** | ** | * |

n.s: not significant; *: p<0.05; **: p<0.01; ***: p<0.001
Table 3. Trial means, individual heritabilities and coefficients of additive genetic variation for the studied traits at ages 3, 5 and 9.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Unit</th>
<th>Trial mean</th>
<th>Age</th>
<th>\hat{h}^2</th>
<th>SE of \hat{h}^2</th>
<th>CV_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT3</td>
<td>m</td>
<td>7.38</td>
<td>3</td>
<td>0.13</td>
<td>0.07</td>
<td>4.5</td>
</tr>
<tr>
<td>HT5</td>
<td>m</td>
<td>9.84</td>
<td>5</td>
<td>0.14</td>
<td>0.06</td>
<td>5.4</td>
</tr>
<tr>
<td>HT9</td>
<td>m</td>
<td>12.19</td>
<td>9</td>
<td>0.36</td>
<td>0.10</td>
<td>11.2</td>
</tr>
<tr>
<td>DBH3</td>
<td>cm</td>
<td>7.93</td>
<td>3</td>
<td>0.17</td>
<td>0.06</td>
<td>6.7</td>
</tr>
<tr>
<td>DBH5</td>
<td>cm</td>
<td>11.06</td>
<td>5</td>
<td>0.24</td>
<td>0.07</td>
<td>6.8</td>
</tr>
<tr>
<td>DBH9</td>
<td>cm</td>
<td>14.83</td>
<td>9</td>
<td>0.36</td>
<td>0.09</td>
<td>7.0</td>
</tr>
<tr>
<td>VOL3</td>
<td>dm3 tree$^{-1}$</td>
<td>9.53</td>
<td>3</td>
<td>0.18</td>
<td>0.06</td>
<td>17.6</td>
</tr>
<tr>
<td>VOL5</td>
<td>dm3 tree$^{-1}$</td>
<td>24.1</td>
<td>5</td>
<td>0.24</td>
<td>0.07</td>
<td>19.7</td>
</tr>
<tr>
<td>VOL9</td>
<td>dm3 tree$^{-1}$</td>
<td>53.93</td>
<td>9</td>
<td>0.39</td>
<td>0.09</td>
<td>25.7</td>
</tr>
<tr>
<td>STR5</td>
<td>score</td>
<td>2.55</td>
<td>5</td>
<td>0.20</td>
<td>0.07</td>
<td>16.2</td>
</tr>
<tr>
<td>STR9</td>
<td>score</td>
<td>1.86</td>
<td>9</td>
<td>0.27</td>
<td>0.10</td>
<td>26.2</td>
</tr>
<tr>
<td>DEN</td>
<td>g cm$^{-3}$</td>
<td>0.58</td>
<td>9</td>
<td>0.61</td>
<td>0.12</td>
<td>8.3</td>
</tr>
<tr>
<td>DEN$_1$</td>
<td>g cm$^{-3}$</td>
<td>0.53</td>
<td>≈0-3</td>
<td>0.40</td>
<td>0.10</td>
<td>8.6</td>
</tr>
<tr>
<td>DEN$_2$</td>
<td>g cm$^{-3}$</td>
<td>0.58</td>
<td>≈4-6</td>
<td>0.55</td>
<td>0.11</td>
<td>8.3</td>
</tr>
<tr>
<td>DEN$_3$</td>
<td>g cm$^{-3}$</td>
<td>0.63</td>
<td>≈7-9</td>
<td>0.55</td>
<td>0.12</td>
<td>9.0</td>
</tr>
<tr>
<td>BRK</td>
<td>mm</td>
<td>5.63</td>
<td>9</td>
<td>0.39</td>
<td>0.10</td>
<td>15.9</td>
</tr>
<tr>
<td>PIN</td>
<td>mm</td>
<td>7.73</td>
<td>9</td>
<td>0.47</td>
<td>0.11</td>
<td>14.7</td>
</tr>
<tr>
<td>FOK</td>
<td>score</td>
<td>2.9</td>
<td>9</td>
<td>0.31</td>
<td>0.10</td>
<td>20.7</td>
</tr>
<tr>
<td>KI</td>
<td></td>
<td>0.93</td>
<td>9</td>
<td>0.12</td>
<td>0.01</td>
<td>21.4</td>
</tr>
</tbody>
</table>
Table 4. Additive genetic (upper triangle), phenotypic correlations (lower triangle) and standard errors of correlations between and within growth, wood density, pilodyn penetration and other quality traits at 9 years old.

<table>
<thead>
<tr>
<th>Trait</th>
<th>HT</th>
<th>DBH</th>
<th>DEN</th>
<th>PIN</th>
<th>STR</th>
<th>FOK</th>
<th>BRK</th>
<th>KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>0.79±0.09</td>
<td>-0.07±0.18</td>
<td>-0.07±0.18</td>
<td>0.79±0.15</td>
<td>0.33±0.19</td>
<td>0.59±0.15</td>
<td>-0.45±0.28</td>
<td></td>
</tr>
<tr>
<td>DBH</td>
<td>0.70±0.02</td>
<td>-0.08±0.19</td>
<td>-0.06±0.18</td>
<td>0.96±0.13</td>
<td>0.37±0.20</td>
<td>0.65±0.13</td>
<td>-0.11±0.30</td>
<td></td>
</tr>
<tr>
<td>DEN</td>
<td>-0.06±0.02</td>
<td>-0.07±0.04</td>
<td>-0.88±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIN</td>
<td>0.02±0.04</td>
<td>0.005±0.04</td>
<td>-0.08±0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STR</td>
<td>0.40±0.03</td>
<td>0.43±0.03</td>
<td></td>
<td>0.30±0.22</td>
<td>0.50±0.20</td>
<td>0.47±0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORK</td>
<td>0.24±0.03</td>
<td>0.19±0.04</td>
<td></td>
<td>0.32±0.03</td>
<td>0.16±0.21</td>
<td>-0.05±0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRK</td>
<td>0.33±0.03</td>
<td>0.50±0.03</td>
<td></td>
<td>0.15±0.04</td>
<td>0.09±0.04</td>
<td>-0.24±0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI</td>
<td>-0.21±0.04</td>
<td>-0.14±0.04</td>
<td></td>
<td>-0.02±0.04</td>
<td>-0.16±0.04</td>
<td>-0.02±0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Age-age additive genetic correlation (r_A), phenotypic correlation (r_P), standard error, age of selection for juvenile (t_j) and mature (t_m), and relative selection efficiency (RSE, expressed as genetic gain per time unit) of indirect selection at the juvenile age for mature traits.

<table>
<thead>
<tr>
<th>Trait</th>
<th>r_A</th>
<th>r_P</th>
<th>t_j</th>
<th>t_m</th>
<th>RSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT3-HT5</td>
<td>0.91±0.13</td>
<td>0.66±0.02</td>
<td>3</td>
<td>5</td>
<td>1.46</td>
</tr>
<tr>
<td>HT3 HT9</td>
<td>0.64±0.17</td>
<td>0.53±0.03</td>
<td>3</td>
<td>9</td>
<td>1.16</td>
</tr>
<tr>
<td>HT5-HT9</td>
<td>0.91±0.08</td>
<td>0.83±0.01</td>
<td>5</td>
<td>9</td>
<td>1.01</td>
</tr>
<tr>
<td>DBH3-DBH5</td>
<td>0.99±0.12</td>
<td>0.72±0.02</td>
<td>3</td>
<td>5</td>
<td>1.39</td>
</tr>
<tr>
<td>DBH3-DBH9</td>
<td>0.86±0.10</td>
<td>0.53±0.03</td>
<td>3</td>
<td>9</td>
<td>1.79</td>
</tr>
<tr>
<td>DBH5-DBH9</td>
<td>0.93±0.05</td>
<td>0.76±0.01</td>
<td>5</td>
<td>9</td>
<td>1.31</td>
</tr>
<tr>
<td>STR5-STR9</td>
<td>0.87±0.18</td>
<td>0.27±0.03</td>
<td>5</td>
<td>9</td>
<td>1.37</td>
</tr>
<tr>
<td>VOL5-VOL9</td>
<td>0.91±0.05</td>
<td>0.80±0.01</td>
<td>5</td>
<td>9</td>
<td>1.27</td>
</tr>
<tr>
<td>DEN1-DEN2</td>
<td>0.97±0.05</td>
<td>0.66±0.02</td>
<td>3</td>
<td>6</td>
<td>1.65</td>
</tr>
<tr>
<td>DEN1-DEN3</td>
<td>1.02±0.03</td>
<td>0.80±0.01</td>
<td>3</td>
<td>9</td>
<td>2.61</td>
</tr>
<tr>
<td>DEN2-DEN3</td>
<td>0.99±0.02</td>
<td>0.91±0.01</td>
<td>6</td>
<td>9</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Ages of the density are assumption
Figure 1. Relationship between breeding value means of DBH and total core density (DEN) for (a) 140 families and (b) 13 seed source in the progeny test